

RIBOFLAVIN: A REVITALIZED VITAMIN

Aragão M. Ângela 1,2,3, Pires Lara 1,2, Santos-Buelga Celestino3, Barros Lillian 1,2 and Calhelha Ricardo1,2 ¹Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portug a Grupo de Investigación en Polifenoles (GIP- USAL). Facultad de Farmacia – Universidad de Salamanca, Campus Miguel de Unamuno s/n 37007 Salamanca, Spain

INTRODUCTION

- Riboflavin is a water-soluble vitamin that belongs to the vitamin B2 complex. It is found abundantly in various foods and has a yellow color while being fluorescent.
- It is considered a promising natural photosensitizer for photodynamic therapy and is being studied for its ability to selectively target cancer cells.
- Photodynamic therapy is a modern and non-invasive treatment with minimal side effects that has shown to be effective for various types of cancer.

Figure 1. The chemical structure of riboflavin.

OBJECTIVES

Develop and evaluate a pharmaceutical formulation for photodynamic therapy, using extracts enriched in riboflavin obtained from various Cucurbitaceae leaves (such as pumpkins, zucchinis, watermelons, cucumbers, etc).

METHODOLOGY

Different extraction methods will be used. including emerging techniques in addition to official methods. The extract's chemical characterization will be performed using chromatographic methods.

RESULTS

- I. Obtain an extract rich in riboflavin or purified riboflavin. II. Validate the potential of riboflavin as a photosensitizer.
- III. Demonstrate the absence of toxic effects on non-tumor cells.

IV. Prepare a formulation containing extracts enriched in riboflavin or purified riboflavin.

V. Validate the effect and stability of the developed formulation.

CONCLUSION

Since this vitamin has promising qualities as a photosensitizer, the utilization of cucurbit leaves as a source of riboflavin is an undiscovered area of research with significant promise to provide new possibilities for the treatment of cancer through photodynamic therapy.

^[1] N. G. Uribe, M. R. García-Galbis, and R. M. M. Espinosa, "New Advances about the Effect of Vitamins on Human Health: Vitamins Supplements and Nutritional Aspects," in Functional Food - Improve Health through Adequate Food, InTech, 2017. doi: 105772/intechopen.69122. [2] J. L. Reveilles, L. Ledesma-Amaro, P. Lozano-Martínez, D. Diaz-Fernández, R. M. Buey, and A. Jiménez, "Bioproduction of riboflavin: a bright yellow history," J Ind Microbiol Biotechnol, vol. 44, no. 4–5, pp. 659–665, May 2017, doi: 10.1007/s10295-016-1842-7. [3] El-Zahery MR. Chemometric methods for the simultaneous determination of some water-soluble vitamins. J. AOAC Int. 94, 467-481

ACKNOWLEDGMENT

have the contraction of the cont