









Innovative and sustainable food ingredients and products

# Development of a chewing gum with *Actinidia* arguta extract as an innovative mitigation strategy for firefighters' occupational exposure

Pedro Almeida<sup>1</sup>, Virgínia C. Fernandes<sup>1</sup>, Cristina Delerue-Matos<sup>1</sup>, Paulo Costa<sup>2,3</sup>, Francisca Rodrigues<sup>1</sup>, Marta Oliveira<sup>1,\*</sup>

<sup>1</sup>REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Porto, Portugal

<sup>2</sup>Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Portugal

<sup>3</sup>REQUIMTE/UCIBIO-Biochemistry Laboratory, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Portugal

\*marta.oliveira@graq.isep.ipp

### Introduction





- Firefighters are exposed to several persistent organic pollutants including polycyclic aromatic hydrocarbons (PAHs), brominated flame retardants (BFR), among others [1].
- In 2022, IARC reclassified the occupational activity of firefighting as carcinogenic to humans (Group 1) [1].
- Most available mitigation strategies focus on better quality and fire resistance of personal protective equipment (PPE) and decontamination procedures of PPE [2].



There is a scientific and technological demand for mitigation strategies for occupational exposure.

### Overview





### The proposed invention



Chewing gum (CG) as mitigation strategy

#### **Advantages**

- Easy-use
- Affordable
- Sustainable



Essential oil



- Capacity to retain the lipophilic pollutants
- Provides pleasant aroma to the product





- Anti-inflammatory and antioxidant effect may offer protection again the pollutants.
- Allows kiwiberry reuse that not are Introduction | 3 commercialized



1. CG development

2. CG characterization



1. CG development

2. CG characterization

# CG development (The formulations)





| Formulations |               | CGR         | CGA  | CGB         | CGC  |
|--------------|---------------|-------------|------|-------------|------|
| Appeara      | ance          |             |      |             |      |
| Composition  | Essential oil | 0.6%        | 0.6% | 0.8%        | 0.8% |
|              | Dry kiwi      | Not present | 0.2% | Not present | 2%   |

CG-Chewing Gum\*

The formulations were developed in collaboration with Lusiteca- Produtos Alimentares PA.



1. CG development

2. CG characterization

### **CG** Characterization (Methodology)





### **Texture Profile Analysis (TPA)**



Rheologic Analysis (RA)



### Sensorial Analysis (SA)\*



<sup>\*</sup> The SA was conducted with a panel of military firefighters from the Special Protection and Relief Unit of the Republican National Guard.

# CG Characterization (TPA)







- All CG formulations display very similar texture profiles
- After chewing similarity increases

# CG Characterization (RA)









- After chewing, test formulations display **similar texture profiles and elastic behavior** within the linear viscoelastic region.
- All formulations display sheer thinning behavior with slight thixotropy.

# CG Characterization (SA)







- SA results indicated that CG<sub>A</sub> and CG<sub>C</sub> are the preferred formulations
- Hardness and Adhesiveness correlate with the TPA results.



1. CG development

2. CG characterization

# Pollutant Removal Efficiency by the CG (Methodology)





#### **General Procedure – Simulations with CG and Artificial Saliva**



#### Steps

- (1) CG is contaminated with standard solution of 7 BFRs and 17 PAHs
- (2) Saliva and CG are separated
- (3) *n*-Hexane or Acetonitrile is added as extraction solvents
- (4) Extracts are concentrated
- (5) Extracts are analyzed via HPLC or Gas chromatography (GC)
- (6) Chromatograms are collected

|                                                        | PAHs                                                                                          | BFRs                                                            |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Naph<br>Acen<br>Ace<br>Flu<br>Phe<br>Ant<br>Fln<br>Pyr | B(a)A<br>Chry<br>B(b)Ft+B(j)Ft<br>B(k)Ft<br>B(a)P<br>DB(a,l)P<br>DB(a,h)A<br>B(g,h,i)P<br>InP | BDE28<br>BDE47<br>BDE100<br>BDE99<br>BDE154<br>BDE153<br>BDE183 |

#### Chewing simulation



Pollutant Removal Efficiency by the CG | 13









- The CG' formulations were capable of retain up to 10 PAHs.
- Overall, CGA and CGB exhibited higher recoveries values.







- All CG' formulations display retention rates of 7 BFRs compounds.
- High recoveries can be observed across all formulations.

### Conclusions and Future Perspectives





### **Main Conclusions**

- All formulations reveal very similar texture profiles and rheological behavior.
- The CG showed good acceptability of the participants.
- The CG reveals promising retention of several BFRs.
- Overall, the analytical requires further optimization to obtain PAH higher recoveries.







### **Future Perspectives**

- All formulations will be used by participants during 2024 firefighting activities to evaluate the presence of fire-related pollutants in the oral cavity of firefighters.
- In the future, the protective capacity of the dry kiwiberry extract will be evaluated through in-vitro cell assays.

### Acknowledgements





### Very special thanks to my supervisors:



Marta Oliveira Ph.D



Francisca Rodrigues Ph.D



Prof. Paulo Costa Ph.D

#### Acknowledgments

I would like to thank the projects:

http://doi.org/10.54499/PCIF/SSO/0090/2019

https://doi.org/10.54499/CEECIND/03666/2017/CP1427/CT0007

https://doi.org/10.54499/2020.01886.CEECIND/CP1596/CT0001

#### Funding

This work was funded by project http://doi.org/10.54499/2022.05381.PTDC through Fundação para a Ciência e a Tecnologia, Ministério da Ciência, Tecnologia e Ensino Superior (FCT-MCTES) with national funds.









# Thank you for listening!

Any questions?

