

Innovative and Sustainable Tomato Snack Bars: Utilizing Food Waste and Plant Proteins for Functional Products Speaker: Muhammed Rasim GÜL

Muhammed Rasim Gul, Tibet Erol, Turgay Taha Celebi, S. Gulum Sumnu, Mecit Halil Oztop

rasim@metu.edu.tr

MIDDLE EAST TECHNICAL UNIVERSITY

This project has received funding from the European Union's PRIMA programme under grant agreement

INTRODUCTION

This project has received funding from the European Union's PRIMA programme under grant agreement No 2032

Sustainable Production

• Sustainable food production is crucial for <u>reducing</u> <u>environmental impact and ensuring food security</u>.

• Our study focuses on <u>creating functional food</u> <u>products from food waste</u>, specifically tomato waste, and plant-based proteins.

• This work aligns with several <u>Sustainable</u> <u>Development Goals</u>.

Mediterranean Diet

Ready-to-eat snacks

Mediterranen diet foods

- Increasing demands for <u>ready-to-eat and snack foods</u> have changed the eating habits of consumers.
- Consumption of such foods constitutes a <u>risk factor</u> for developing cardiovascular diseases and obesity (Miranda et al., 2019).

Cardiovascular diseases and obesity

- The Mediterranean diet is highly recommended for a balanced lifestyle (Casas et al., 2018).
- The diet comprises fruits and vegetables, <u>vitamins, minerals, omega-3 fatty acids</u>, <u>lycopene, and polyphenols</u> (Uylaşer & Yildiz, 2014).

• Tomatoes have lycopene, olives contain polyphenols, peas, chickpeas and sugar beet leaves are rich in protein.

Snack bars

• More plant-based health-promoting alternatives of snacks with high nutritional value have been demanded nowadays. (Mostafavi et al., 2021)

Plant-based snack bars in industry

Microwave-Vacuum Drying

- <u>Microwave drying</u> is one of the <u>novel</u> food processing techniques (Baghel, 2023).
- Microwaves convert <u>electromagnetic energy into thermal energy</u> by causing internal friction and vibrations of

Electromagnetic wave spectrum (Ari Adi et al., 2019).

High temperatures and long processing times are <u>not desired</u> for high food quality.

Dehydrated fruits

- <u>Microwave-assisted heating systems</u> have gained significant interest due to their advantages (Yılmaz et al., 2018).
- <u>Microwave vacuum (MWV) drying</u> technology uses a vacuum to prevent high temperatures (González-Cavieres et al., 2021).
- Vacuuming results in <u>reduced pressure</u>, <u>lowering the evaporation temperature</u>.
- Shorter processing time, less energy consumption, and more nutrient preservation are achieved.

Microwave-vacuum dryer

MATERIALS AND METHODS

This project has received funding from the European Union's PRIMA programme under grant agreement No 2032

Materials for production

Table 1. Composition of the tomato snack bar

Ingredients	Amounts (g)
Tomato juice	100
PPI / CP / RUB	0 / 5 / 10
Salt	2
Olive powder	2
Rosemary	1
Thyme	1
Red pepper powder	1
LMP	1
Tomato powder	10

Flow chart of production

A conventional oven was used at 120°C for 90 minutes to obtain the control samples.

Experimental Design and Studied Parameters

Table 2. Experimental Design of tomato snack bars						
Sample#	PEA (%)	CHICKPEA (%)	RUBISCO (%)			
1	5	-	5			
2	10	-	-			
3	5	5	-			
4	-	5	5			
5	-	10	-			
6*	10	-	_			

STUDIED PARAMETERS
Water activity
Moisture content
Color measurement
Texture
Lycopene content
NMR T ₂
Sensory

*Represents the conventionally dried sample.

Color

Moisture content & water

NMR T₂

• CIE*L***a***b** values were measured using a portable Spectro colorimeter.

Serlab SL400, İstanbul, Turkey

activity, $a_{\rm w}$

- The moisture content (MC) of samples was determined gravimetrically by drying the samples at 105°C.
- The a_w was determined by using a

Water Activity Meter.

Aqua Lab 4TE (Decagon Devices Inc., Pullman, Wash., U.S.A)

T₂ relaxation times were measuredusing Carr-Purcell-Meiboom-Gill(CPMG) sequence.

Spin Track, Resonance Systems GmbH, Kirchheim/Teck, Germany

Lycopene

 Lycopene was extracted from the sample and read by UV-vis spectrophotometer.

Optizen Pop, Mecasys, Daejeon, Republic of Korea.

FTIR

• The powder forms of samples were examined using an IR Affinity-1

Spectrometer.

Texture

• Texture Profile Analysis (TPA) was performed with a texture analyzer instrument.

Sensory

• 6 Sensory panelist experts conducted tests on snack bars.

SELUZ Fragrance Company, Istanbul

RESULTS & DISCUSSION

This project has received funding from the European Union's PRIMA programme under grant agreement No 2032

Formulation and visual appearance of the tomato snack bars

- All the proteins contributed to a good visual appearance and shape.
- <u>Rubisco</u> protein resulted in the <u>darkest</u> tomato snack bar.
 - A <u>darker color</u> was observed for the <u>conventional oven</u> drying than MWV.

15

<u>Crust formation</u> occurred in the <u>conventionally dried</u> snack bars.

Photos of tomato snack bars with different proteins before and after microwave-vacuum and conventional drying*

Color Results

b* **Protein 1 (%) Protein 2 (%)** L^* **a*** 12.8 ± 0.2^{b} 5 PEA 31.5 ± 0.0^{bc} $19.9 \pm 0.4^{\rm bc}$ 5 RUB 38.1 ± 0.8^{aA} 21.2 ± 0.2^{aA} 27.1 ± 0.3^{aA} 10 PEA 35.6 ± 1.0^{ab} 21.4 ± 0.2^{a} 26.0 ± 0.1^{a} 5 CP 5 PEA $27.6 \pm 1.4^{\circ}$ 11.8 ± 0.0^{b} $17.5 \pm 1.0^{\circ}$ 5 CP 5 RUB 10 CP 32.8 ± 2.0^{b} 19.9 ± 0.7^{a} 23.6 ± 1.0^{ab} 10 PEA* $30.6 \pm 0.3^{\text{B}}$ $17.6 \pm 0.2^{\text{B}}$ 17.9 ± 0.5^{B}

Table 3. Effect of protein type and concentration on L^{*}, a^{*}, and b^{*} values of tomato snack bars

*Represents the conventionally dried sample. Different small letters indicate significant differences (p < 0.05) within the microwave-vacuum dried samples, whereas different capital letters indicate significant differences (p < 0.05) between conventionally dried and microwave-vacuum dried samples at the same protein type and concentration. Errors are represented as standard deviations.

• Pea, chickpea, and rubisco proteins contributed to the lightness, redness, and yellowness in descending order.

Water activity and Moisture content Results

Protein 1 (%)	Protein 2 (%)	Moisture Content (%)	a _w
5 RUB	5 PEA	22.3 ± 1.6^{a}	0.66 ± 0.0^{a}
10 PEA	-	22.2 ± 2.1^{aA}	0.65 ± 0.0^{aA}
5 CP	5 PEA	21.3 ± 0.7^{a}	0.66 ± 0.0^{a}
5 CP	5 RUB	21.1 ± 1.8^{a}	0.66 ± 0.0^{a}
10 CP	_	19.8 ± 0.9^{a}	0.64 ± 0.0^{a}
10 PEA*	_	32.9 ± 1.6^{B}	$0.69 \pm 0.0^{\rm A}$

Table 4. Moisture content and water activity of tomato snack bars

- There were <u>no significant differences</u> between the samples for both water activity (a_w) and moisture content for the microwave-vacuum dried samples (p>0.05).
- Moisture content was significantly <u>higher in the conventional</u> sample.

Lycopene Results

Protein 1 (%)	Protein 2 (%)	Lycopene (mg lycopene/g dry solid)
5 RUB	5 PEA	48.3 ± 2.6^{a}
10 PEA	_	32.6 ± 3.3^{bA}
5 CP	5 PEA	48.4 ± 6.0^{a}
5 CP	5 RUB	50.3 ± 5.4^{a}
10 CP	-	30.8 ± 2.3^{b}
10 PEA*	_	$39.7 \pm 5.2^{\text{A}}$

Table 5. Lycopene content of tomato snack bars

- Lycopene amount was higher in mixed protein samples, especially rubisco-added ones.
- Lycopene content <u>did not change</u> significantly (p>0.05) with <u>drying</u> type.

Texture Results

Table 6. Textural properties of tomato snack bars

Protein 1 (%)	Protein 2 (%)	Hardness (N)	Gumminess (N)	Chewiness (g.cm)	Cohesiveness
5 RUB	5 PEA	22.7 ± 6.4^{a}	11.7 ± 3.4^{ab}	144.7 ±15.3 ^a	0.52 ± 0.0^{ab}
10 PEA	-	19.2 ± 3.2^{aA}	10.4 ± 1.8^{abA}	162 ± 0.8^{aB}	0.54 ± 0.0^{aA}
5 CP	5 PEA	21.2 ± 6.8^{a}	11.3 ± 3.2^{ab}	162.7 ± 4.9^{a}	0.54 ± 0.0^{a}
5 CP	5 RUB	17.5 ± 5.1^{a}	8.3 ± 2.3^{b}	88 ± 5.7^{b}	0.48 ± 0.0^{b}
10 CP	-	24.7 ± 4.8^{a}	13.6 ± 1.8^{a}	157.3 ± 9.7^{a}	0.56 ± 0.0^{a}
10 PEA*	_	$27.8 \pm 8.7^{\text{A}}$	$15.0 \pm 4.6^{\text{A}}$	225.7 ± 14.7^{A}	0.54 ± 0.0^{A}

- Hardness values were found <u>insignificant</u> (p>0.05) among the different protein samples.
- <u>Rubisco</u> protein <u>decreased</u>, and <u>pea</u> protein <u>increased</u> the values of other textural attributes.
- The chewiness of the <u>conventionally dried sample</u> was significantly <u>higher</u> than that of the microwave-vacuum-dried samples.

Distribution of water by NMR relaxometry

Distribution & discrete component analysis mode of XPFit software for a representative T2 data

Data and fitted curve

- <u>Three-component model</u> of the transverse relaxation behavior was examined.
- Each proton pool is represented with a peak and its corresponding area (contribution to the signal).
- Short, T₂₁: <u>strongly bound</u>.
- Moderate, T_{22} : <u>weaker interaction</u> of water with solids.
- Long, T_{23} : <u>the least interaction</u> with polymer structure (bulk water).

Distribution analysis : [1; 900] Fitting range Number of Intervals : 70 Boundaries : [1.000; 900.0] Resolution : 0 ₂2 0.047 Peak Num в Bnorm Std T τ 0.049 0.100 1.051 1.051 0.029 2 0.134 0.272 13.47 13.15 0.871 3 0.309 0.628 85.58 83.32 9.949 Background Discrete Components Analysis Fitting range [1; 900] γ^2 0.050 $\Delta \chi^2$ [Error Analysis] : 3.5e-7 в Exponential Bnorm 0.090 2.514 0.175 Confidence Interval 0.022 + 0.0241.886 . + 1.110 2 0.184 0.357 26.58 Confidence Interval - 0.019 . + 0.023 - 5.943 , + 5.644 0.242 3 0.469 112.4 Confidence Interval - 0.033 . + 0.023 - 9.661 , + 12.94 Background : -0.009 Confidence Interval :-0.003 + 0.002

Peak analysis

NMR T₂ Results

Table 7. T₂ values and their corresponding areas of tomato snack bars

Protein 1 (%)	Protein 2 (%)	T ₂₁ (ms)	T ₂₂ (ms)	T ₂₃ (ms)
5 RUB	5 PEA	1.47 ± 0.04^{a}	14.27±0.92°	80.79±0.17°
10 PEA	_	1.38 ± 0.03^{abB}	15.18±0.68 ^{bcA}	82.9±2.74 ^{cA}
5 CP	5 PEA	1.18±0.12 ^{bc}	21.07±0.04ª	91.11±1.27 ^a
5 CP	5 RUB	1.32 ± 0.07^{ab}	17.29±0.94 ^b	84.51±2.27 ^{bc}
10 CP	_	1.08±0.03°	21.12±0.24 ^a	89.54±0.47 ^{ab}
10 PEA*	-	2.36±0.03 ^A	12.69±0.02 ^B	82.78 ± 0.02^{A}

*Represents the conventionally dried sample. Different small letters indicate significant differences (p < 0.05) within the microwave-vacuum dried samples, whereas different capital letters indicate significant differences (p < 0.05) between conventionally dried and microwave-vacuum dried samples at the same protein type and concentration. Errors are represented as standard deviations.

• T_2 was affected by <u>drying type</u>; mw-vacuum drying was <u>more successful in removing the bound water</u> due to shorter T_{21} .

Sensory Results

Fable 8. The taste and	l flavor evaluation	n results were as	follows:
-------------------------------	---------------------	-------------------	----------

Sample	Tomato	Dried	Saltiness	Sweetness	Sourness/	Spicy notes	Crunchiness	Overall
	paste	tomato			Astringency			impression
	flavor	flavor						
5 RUB- 5	2.5	2	1.5	1.5	3	3.2	1	2.5
PEA								
10 PEA	1.5	3	2	1.5	3.2	2.5	1	2.8
5 CP- 5	2	3.2	1.8	1.5	2.5	2.5	1	<mark>4</mark>
PEA								
5 CP- 5	3	1.5	2	1.2	3.4	2.8	1	2.6
RUB								
10 CP	1.8	2	1.5	1.5	2	1.5	1.5	2
CONV 10	1	3.5	2	1.2	2.5	2	1	3.5
PEA								

• Sensory results showed that the best formulation was the chickpea-pea mixture dried in MWV in terms of appearance and taste.

Sustainability Approach of the Study

Contribution to SDGs:

SDG 2: Zero Hunger: By promoting the use of food waste and transforming it into nutritious snack bars. By utilizing agricultural waste, such as <u>sugar beet leaves and tomato skins</u>, we are not only reducing food waste but also creating a sustainable food source that can help alleviate hunger and provide <u>essential nutrients</u>.

SDG 3: Good Health and Well-being: The tomato snack bars are enriched with <u>plant-based</u> <u>proteins and antioxidants</u> like lycopene from tomatoes and health-promoting compounds from olives. This offers a healthy, nutrient-dense snack option that can help improve dietary habits and overall health.

Sustainability Approach of the Study

Contribution to SDGs:

SDG 12: Responsible Consumption and Production: By utilizing food waste and sustainable ingredients in the production of tomato snack bars. This approach encourages more sustainable food production practices and promotes <u>the efficient use of resources</u>, <u>reducing the environmental impact</u> of food production.

SDG 13: Climate Action: Reducing food waste helps lower greenhouse gas emissions associated with food production and waste management. Additionally, plant-based proteins have a <u>lower</u> <u>carbon footprint</u> compared to animal-based proteins, <u>contributing to climate change mitigation</u>.

SDG 15: Life on Land: By promoting the use of agricultural by-products such as <u>tomato waste and</u> <u>sugar beet leaves</u>. This practice helps reduce the environmental burden on land and supports biodiversity by encouraging the use of <u>diverse plant-based ingredients</u>.

Key Ingredients in the Sustainability Aspect

• Sustainability Aspects of Key Ingredients:

Olive Powder: The production of olive powder involves drying and grinding olives, a process that can utilize surplus or lower-grade olives that might otherwise go to waste. Using olive powder <u>not only adds</u> <u>nutritional value to the snack bars but also supports sustainable agricultural practices</u>.

Tomato Powder: Tomato powder is produced by drying and grinding tomatoes, preserving their nutritional properties such as <u>vitamins</u>, <u>minerals</u>, <u>and antioxidants like lycopene</u>. This process is an effective way to use residue or damaged tomatoes that are not suitable for fresh sale. Incorporating tomato powder into snack bars helps <u>reduce food waste</u>.

Rubisco Protein: Rubisco protein is extracted from sugar beet leaves, which are often considered a by-product of sugar production. Rubisco is a highly efficient protein providing a valuable source of plant-based protein. Utilizing rubisco protein from sugar beet leaves adds value to what would otherwise be <u>agricultural waste</u>, supporting circular economy principles.

CONCLUSION & FUTURE WORK

This project has received funding from the European Union's PRIMA programme under grant agreement No 2032

CONCLUSIONS

- The snack bars contribute to <u>multiple SDGs</u> by <u>utilizing food waste and plant-based proteins</u>.
- Our work demonstrates how innovative food products can contribute to a more sustainable and healthy future.
- The study demonstrated the feasibility of producing healthy snack bars <u>economically</u>.
- <u>Functional snack bars can be produced with a minimal number of ingredients by using mw-vacuum drying.</u>
- <u>Protein types and concentrations affected the properties of snack bars.</u>
- <u>Browning, and crust formation occurred more in the conventionally dried samples, which were undesirable characteristics.</u>
- Microwave-vacuum drying is <u>superior</u> to conventional drying in terms of <u>time and energy</u> efficiency, and <u>quality</u> properties.

FUNTOMP DECLARATION

SUSTAINABILITY

Committed to sustainability, FunTomP utilizes agricultural by-products and eco-friendly technologies to minimize waste and reduce the environmental footprint of food production, aligning with the 2030 Agenda for Sustainable Development Goals (SDGs) and promoting responsible consumption and production.

SUSTAINABLE G ALS

REFERENCES

Ali, M. Y., Sina, A. A. I., Khandker, S. S., Neesa, L., Tanvir, E. M., Kabir, A., Khalil, M. I., & Gan, S. H. (2021). Nutritional composition and bioactive compounds in tomatoes and their impact on human health and disease: A review. *Foods*, *10*(1). https://doi.org/10.3390/foods10010045

Aryal, S.; Baniya, M.K.; Danekhu, K.; Kunwar, P.; Gurung, R.; Koirala, N. (2019) Total Phenolic Content, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal. Plants, 8, 96. https://doi.org/10.3390/plants8040096

Casas, R., Castro-Barquero, S., Estruch, R., & Sacanella, E. (2018). Nutrition and cardiovascular health. In *International Journal of Molecular Sciences* (Vol. 19, Issue 12). MDPI AG. https://doi.org/10.3390/ijms19123988

González-Cavieres, L., Pérez-Won, M., Tabilo-Munizaga, G., Jara-Quijada, E., Díaz-Álvarez, R., & Lemus-Mondaca, R. (2021). Advances in vacuum microwave drying (VMD) systems for food products. In *Trends in Food Science and Technology* (Vol. 116, pp. 626–638). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2021.08.005

Kumar Baghel, P. (2023). Application of microwave in manufacturing technology: A review. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.02.008

Lazzari-Dean, J. R., Lefebvre, A. E. Y. T., Hayward, R. F., Whitehead, L., Ingaramo, M., & York, A. G. (2023). From cameras to confocal to cytometry: measuring tumbling rates is a general way to reveal protein binding (0.0.0). Zenodo. https://doi.org/10.5281/zenodo.10028433

Leslie, M. A., Cohen, D. J. A., Liddle, D. M., Robinson, L. E., & Ma, D. W. L. (2015). A review of the effect of omega-3 polyunsaturated fatty acids on blood triacylglycerol levels in normolipidemic and borderline hyperlipidemic individuals. In *Lipids in Health and Disease* (Vol. 14, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s12944-015-0049-7

Miranda, J. J., Barrientos-Gutiérrez, T., Corvalan, C., Hyder, A. A., Lazo-Porras, M., Oni, T., & Wells, J. C. K. (2019). Understanding the rise of cardiometabolic diseases in low- and middle-income countries. In *Nature Medicine* (Vol. 25, Issue 11, pp. 1667–1679). Nature Publishing Group. https://doi.org/10.1038/s41591-019-0644-7

Mostafavi, F., Zamani-Alavijeh, F., Mansourian, M., & Bastami, F. (2021). The promotion of healthy breakfast and snacks based on the social marketing model: a mixed-methods study. *Journal of Health, Population and Nutrition, 40*(1). https://doi.org/10.1186/s41043-021-00245-y

Pocan, P., Grunin, L., & Oztop, M. H. (2022). Effect of Different Syrup Types on Turkish Delights (Lokum): A TD-NMR Relaxometry Study. ACS Food Science and Technology, 2(12), 1819–1831. https://doi.org/10.1021/acsfoodscitech.2c00222

Ramírez-Jiménez, A. K., Gaytán-Martínez, M., Morales-Sánchez, E., & Loarca-Piña, G. (2018). Functional properties and sensory value of snack bars added with common bean flour as a source of bioactive compounds. *LWT*, *89*, 674–680. https://doi.org/10.1016/j.lwt.2017.11.043

Uylaşer, V., & Yildiz, G. (2014). The Historical Development and Nutritional Importance of Olive and Olive Oil Constituted an Important Part of the Mediterranean Diet. *Critical Reviews in Food Science and Nutrition*, 54(8), 1092–1101. https://doi.org/10.1080/10408398.2011.626874

Witkamp, R. (2010). Biologically Active Compounds in Food Products and Their Effects on Obesity and Diabetes. Comprehensive Natural Products II: Chemistry and Biology, 3. https://doi.org/10.1016/B978-008045382-8.00063-0

Yılmaz, M. S., Şakıyan, Ö., Mazi, I., & Mazi, B. (2018). Phenolic content and some physical properties of dried broccoli as affected by drying method. *Food Science and Technology International*, 25, 108201321879752. <u>https://doi.org/10.1177/1082013218797527</u>

ACKNOWLEDGEMENTS & OUTPUTS

• This study was guided and funded by European Union's Horizon 2020 **PRIMA** Section I program under Grant Agreement No. 2032, for the project titled as **FunTomP** (Functionalized Tomato Products).

• Some part of the study was presented at the 37th EFFOST conference in 2023.

THANK YOU ③

This project has received funding from the European Union's PRIMA programme under grant agreement No 2032

BACK-UP SLIDES

This project has received funding from the European Union's PRIMA programme under grant agreement No 2032

FTIR spectroscopy

FTIR spectra of the snack bars and selected proteins

NMR Area Results

Protein 1 (%)	Protein 2 (%)	Area (%)	Area (%)	Area (%)
5 RUB	5 PEA	77.9±0.59ª	9.7±0.22°	12.43±0.57°
10 PEA	-	79.5±0.50 ^{aA}	8.23 ± 0.42^{dB}	12.23±0.25 ^{Ca}
5 CP	5 PEA	73.8±0.88 ^b	10.93±0.60 ^b	15.27±0.45 ^b
5 CP	5 RUB	72.7±0.49 ^b	10.9 ± 0.29^{bc}	16.4±0.72 ^b
10 CP	-	68.5±0.50°	13.0±0.12ª	18.5±0.57 ^a
10 PEA*	_	78.3±0.08 ^B	12.6±0.04 ^A	9.03±0.05 ^B

Table 9. Area values and their corresponding areas of tomato snack bars